Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Zool Res ; 45(3): 451-463, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38583936

RESUMEN

The gut microbiota significantly influences host physiology and provides essential ecosystem services. While diet can affect the composition of the gut microbiota, the gut microbiota can also help the host adapt to specific dietary habits. The carrion crow ( Corvus corone), an urban facultative scavenger bird, hosts an abundance of pathogens due to its scavenging behavior. Despite this, carrion crows infrequently exhibit illness, a phenomenon related to their unique physiological adaptability. At present, however, the role of the gut microbiota remains incompletely understood. In this study, we performed a comparative analysis using 16S rRNA amplicon sequencing technology to assess colonic content in carrion crows and 16 other bird species with different diets in Beijing, China. Our findings revealed that the dominant gut microbiota in carrion crows was primarily composed of Proteobacteria (75.51%) and Firmicutes (22.37%). Significant differences were observed in the relative abundance of Enterococcus faecalis among groups, highlighting its potential as a biomarker of facultative scavenging behavior in carrion crows. Subsequently, E. faecalis isolated from carrion crows was transplanted into model mice to explore the protective effects of this bacterial community against Salmonella enterica infection. Results showed that E. faecalis down-regulated the expression of pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), and interleukin 6 (IL-6), prevented S. enterica colonization, and regulated the composition of gut microbiota in mice, thereby modulating the host's immune regulatory capacity. Therefore, E. faecalis exerts immunoregulatory and anti-pathogenic functions in carrion crows engaged in scavenging behavior, offering a representative case of how the gut microbiota contributes to the protection of hosts with specialized diets.


Asunto(s)
Cuervos , Animales , Ratones , Enterococcus faecalis , Ecosistema , ARN Ribosómico 16S , Conducta Alimentaria , Aves
2.
Ticks Tick Borne Dis ; 15(2): 102293, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38086248

RESUMEN

Ticks are primary vectors for many tick-borne pathogens (TBPs) and pose a serious threat to veterinary and public health. Information on the presence of TBPs in Chinese Milu deer (Elaphurus davidianus) is limited. In this study, a total of 102 Chinese Milu deer blood samples were examined for Anaplasma spp., Theileria spp., Babesia spp., Rickettsia spp., and Borrelia spp., and three TBPs were identified: Anaplasma phagocytophilum (48; 47.1 %), Candidatus Anaplasma boleense (47; 46.1%), and Theileria capreoli (8; 7.8 %). Genetic and phylogenetic analysis of the 16S rRNA and 18S rRNA confirmed their identity with corresponding TBPs. To our knowledge, this is the first report on Candidatus A. boleense and T. capreoli detection in Chinese Milu deer. A high prevalence of A. phagocytophilum with veterinary and medical significance was identified in endangered Chinese Milu deer, which could act as potential zoonotic reservoirs. The identification of the TBPs in Chinese Milu deer provides useful information for the prevention and control of tick-borne diseases.


Asunto(s)
Ciervos , Rickettsia , Theileria , Enfermedades por Picaduras de Garrapatas , Garrapatas , Animales , Garrapatas/microbiología , Ciervos/microbiología , Filogenia , ARN Ribosómico 16S/genética , Rickettsia/genética , Anaplasma/genética , Enfermedades por Picaduras de Garrapatas/epidemiología , Enfermedades por Picaduras de Garrapatas/veterinaria , Enfermedades por Picaduras de Garrapatas/microbiología , Theileria/genética , China/epidemiología
3.
Pathogens ; 10(2)2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-33671750

RESUMEN

Melophagus ovinus (sheep ked) is a hematophagous ectoparasite that mainly parasitizes sheep. In addition to causing inflammation, wool loss, and skin damage to the animal hosts, M. ovinus also serves as a vector for a variety of pathogens and is highly likely to participate in the life and transmission cycle of pathogenic organisms. Herein, we investigated the presence and molecular characterization of vector-borne pathogens in M. ovinus from Qinghai-Tibet Plateau, China. A total of 92 M. ovinus pools collected from the Qinghai province of China were screened for the presence of selected vector-borne pathogens. The overall positive rate of A. ovis, A. bovis, A. phagocytophilum, and T. ovis in M. ovinus was 39.1%, 17.4%, 9.8%, and 89.1%, respectively. All of the samples were negative for Border disease virus (BDV), other Anaplasma species, Babesia spp., Rickettsia spp., and Borrelia spp. Co-infection of different Anaplasma species and T. ovis occurred in 51.2% of all samples with T. ovis. The positive rates of A. ovis, A. bovis, and A. phagocytophilum in different regions and altitudes of the sampling sites were significantly different. Sequence and phylogenetic analysis of target genes confirmed their identity with corresponding pathogens. Our results elucidate the occurrence and molecular characterization of Anaplasma spp. and Theileria spp. in M. ovinus, which could act as potential zoonotic reservoirs. To the best of our knowledge, this is the first report of the detection of A. bovis and A. phagocytophilum DNA in M. ovinus. This study gives the first extensive molecular survey of vector-borne pathogens with veterinary and public health significance in M. ovinus from the Qinghai-Tibet Plateau, China.

4.
Front Vet Sci ; 8: 779387, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35211533

RESUMEN

The Qinghai-Tibet Plateau Area (QTPA) has a complex natural ecosystem, causing a greatly increased risk of spreading various tick-borne diseases including rickettsial infections, which are regarded as one of the oldest known vector-borne zoonoses. However, the information of one of its pathogen, spotted fever group Rickettsia (SFG Rickettsia), is limited in tick vectors and animals in this area. Therefore, this study focused on the investigation of SFG Rickettsia in tick vectors, yaks (Bos grunniens), and Tibetan sheep (Ovis aries) in the QTPA. A total of 1,000 samples were collected from nine sampling sites, including 425 of yaks, 309 of Tibetan sheep, 266 of ticks. By morphological examination, PCR, and sequencing, we confirmed the species of all collected ticks. All tick samples, all yak and Tibetan sheep blood samples were detected based on SFG Rickettsia ompA and sca4 gene. The results showed that all tick samples were identified to be Haemaphysalis qinghaiensis, and the positive rates of SFG Rickettsia were 5.9% (25/425), 0.3% (1/309), and 54.1% (144/266) in yaks, Tibetan sheep, and ticks, respectively. All positive samples were sequenced, and BLASTn analysis of the ompA gene sequences of SFG Rickettsia showed that all positive samples from animals and ticks had 99.04-100% identity with yak and horse isolates from Qinghai Province, China. BLASTn analysis of the sca4 gene sequences of SFG Rickettsia showed that all positive samples had 97.60-98.72% identity with tick isolates from Ukraine. In addition, the phylogenetic analysis showed that all the SFG Rickettsia ompA and sca4 sequences obtained from this study belong to the same clade as Rickettsia raoultii isolated from livestock and ticks from China and other countries. Molecularly, this study detected and characterized SFG Rickettsia both in the tick vectors and animals, suggesting that the relationship between SFG Rickettsia, tick species and animal hosts should be explored to understand their interrelationships, which provide a theoretical basis for preventing control of this pathogen.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...